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1 Use the relevant standard results in the List of Formulae to prove that

SN =
N

∑
n=1

(8n3 − 6n2) = N(N + 1)(2N2 − 1). [2]

Hence show that
2N

∑
n=N+1

(8n3 − 6n2)
can be expressed in the form

N(aN3 + bN2 + cN + d),
where the constantsa, b, c, d are to be determined. [2]

2 The curveC has equation

y = x − ax2

x − 1
,

wherea is a constant anda > 1.

(i) Find the equations of the asymptotes ofC. [3]

(ii) Show that thex-coordinates of both the turning points ofC are positive. [4]

3 The curveC has equation

(x2 + y2)2 = 4xy.

(i) Show that the polar equation ofC is r2 = 2 sin 2θ. [2]

(ii) Draw a sketch ofC, indicating any lines of symmetry as well as the form ofC at the pole. [5]

(iii) Write down the maximum possible distance of a point ofC from the pole. [1]

4 It is given that

dn

dxn ( ln x
x

) = an ln x + bn

xn+1
,

wherean andbn depend only onn.

(i) Find a1, a2 anda3. [3]

(ii) Use mathematical induction to establish a formula foran. [5]
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5 Write down the eigenvalues of the matrixA, given by

A = ( 1 2 −3
0 3 −1
0 0 4

) ,

and obtain a set of corresponding eigenvectors. [6]

Find a non-singular matrixP and a diagonal matrixD such thatA5 = PDP−1. [2]

6 Let

In = 	 e2

e
(ln x)n dx,

wheren ≥ 0. By considering
d
dx

[x(ln x)n+1], or otherwise, show that

In+1 = 2n+1e2 − e− (n + 1)In. [4]

Find I
3

and deduce that the mean value of(ln x)3 over the interval e≤ x ≤ e2 is

2(e+ 1
e− 1

). [5]

7 Find the roots of the equation

�3 = −(4√
3) + 4i,

giving your answers in the formreiθ , wherer > 0 and 0≤ θ < 2π. [5]

Denoting these roots by�1, �2, �3, show that, for every positive integerk,

�3k
1 + �3k

2 + �3k
3 = 3(23k

e
5
6
kπi). [4]

8 The curveC is defined parametrically by

x = t3 − 3t, y = 3t2 + 1,

wheret > 1.

(i) Show that
d2y

dx2
is negative at every point ofC. [5]

(ii) The arc ofC joining the point wheret = 2 to the point wheret = 3 is rotated through one complete
revolution about thex-axis. Find the area of the surface generated. [5]
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9 The variabley depends onx and the variablesx andt are related byx = 1
t
. Show that

dy
dx

= −t2
dy
dt

and
d2y

dx2
= t4

d2y

dt2
+ 2t3

dy
dt

. [4]

The variablesx andy are related by the differential equation

x5d2y

dx2
+ (2x4 − 5x3)dy

dx
+ 4xy = 14x + 8.

Show that

d2y

dt2
+ 5

dy
dt

+ 4y = 8t + 14. [2]

Hence find the general solution fory in terms ofx. [5]

10 The linear transformation T :�4 → �4 is defined by

T :


x
y
�
t

 �→ A


x
y
�
t

 ,

where

A = 
3 1 3 −2
5 0 7 −7
6 2 6 θ + 2
9 3 9 θ

 .

(i) Show that whenθ ≠ −6, the dimension of the null spaceK of T is 1, and that whenθ = −6, the
dimension ofK is 2. [4]

(ii) For the caseθ ≠ −6, determine a basis vectore1 for K of the form


x1
y1�1
0

, wherex1, y1, �1 are

integers. [2]

(iii) For the caseθ = −6, determine a vectore2 of the form


x2
y2
0
t2

, wherex2, y2, t2 are integers, such

that{e1, e2} is a basis ofK. [3]

(iv) Given thatθ = −6, b = 
5
5

10
15

, e0 = 
1
1
1
1

, show thatx = e0 + k1e1 + k2e2 is a solution of the

equationAx = b for all real values ofk1 andk2. [3]
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11 Answer onlyone of the following two alternatives.

EITHER

(i) Find the acute angle beween the linel whose equation is

r = s(2i + 2j + k)
and the planeΠ1 whose equation is

x − � = 0. [3]

(ii) Find, in the formax + by + c� = 0, the equation of the planeΠ2 which containsl and is
perpendicular toΠ1. [3]

(iii) Find a vector equation of the line of intersection of the planesΠ1 andΠ2 and hence, or otherwise,
show that the vectorsi − k, 2i + 2j + k and 3i + 4j + 3k are linearly dependent. [3]

(iv) The variable linem passes through the point with position vector 4i + 4j+ 2k and is perpendicular
to l. The linem meetsΠ1 at Q. Find the minimum distance ofQ from the origin, asm varies,
giving your answer correct to 3 significant figures. [5]

OR

The roots of the equation

x3 − x − 1 = 0

areα, β, γ , and

Sn = αn + βn + γ n.

(i) Use the relationy = x2 to show thatα2, β2, γ 2 are the roots of the equation

y3 − 2y2 + y − 1 = 0. [3]

(ii) Hence, or otherwise, find the value ofS4. [2]

(iii) Find the values ofS8, S12 andS16. [9]
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